Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 69654
1.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1) k боль­ше t
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
3)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 4 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 4 конец дроби
4) 4k боль­ше 4t
5)  минус 4k мень­ше минус 4t
2.  
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a2,9
b1148,7
1) 43
2) 33
3) 39
4) 13
5) 38
3.  
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  21. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.

1) 10,5
2) 9,6
3) 11,8
4) 10,2
5) 9,4
4.  
i

Две окруж­но­сти с цен­тра­ми A и B ка­са­ют­ся в точке M. Най­ди­те длину от­рез­ка CN, если AC = 5 и диа­метр боль­шей окруж­но­сти на 35 боль­ше ра­ди­у­са мень­шей окруж­но­сти.

1) 15
2) 20
3) 25
4) 30
5) 70
5.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 240 умно­жить на дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 240 конец дроби .

1) 0,1
2) −24
3) −0,1
4) 81,6
5) 24
6.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
7.  
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 8 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:

1) 36
2) 19
3) 15
4) 49
5) 47
8.  
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию 3 в сте­пе­ни x = ко­рень из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та .

1) 2x плюс 3=0
2) 3 в сте­пе­ни x =9
3)  тан­генс в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби =2x
4)  ло­га­рифм по ос­но­ва­нию x 3=27
5) 2 в сте­пе­ни x =8
9.  
i

Среди чисел  ко­рень из 5 ;  ко­рень из 6 ;  ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та ука­жи­те то, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше или равно 5,x мень­ше 6. конец си­сте­мы .

1)  ко­рень из 5
2)  ко­рень из 6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та
10.  
i

Ука­жи­те номер квад­рат­но­го урав­не­ния, кор­ня­ми ко­то­ро­го яв­ля­ют­ся числа x1 − 1, x2 − 1, где x1, x2  — корни квад­рат­но­го урав­не­ния 2x2 − 7x − 3  =  0.

1) x2 + x − 3  =  0;

2) 2x2 + 11x + 10  =  0;

3) 2x2 − 3x − 8  =  0;

4) 2x2 + 3x − 8  =  0;

5) 2x2 − 11x + 10  =  0.

1) 1
2) 2
3) 3
4) 4
5) 5
11.  
i

Стро­и­тель­ные бри­га­ды №1 и №2 ку­пи­ли со­от­вет­ствен­но 18 и 19 фун­да­мент­ных бло­ков у од­но­го из трех по­став­щи­ков, вы­брав для себя наи­бо­лее де­ше­вый ва­ри­ант. Сто­и­мость од­но­го блока и усло­вия до­став­ки всей по­куп­ки при­ве­де­ны в таб­ли­це. Опре­де­ли­те, на сколь­ко руб­лей до­ро­же обо­шлась эта по­куп­ка с до­став­кой одной из бри­гад. Ответ за­пи­ши­те в руб­лях.

 

По­став­щикСто­и­мость
(тыс. руб.
за 1 шт.)
Сто­и­мость до­став­ки
(тыс. руб.
за всю по­куп­ку)
Спе­ци­аль­ное
пред­ло­же­ние
12051850
22401950До­став­ка со скид­кой 50 %, если сумма за­ка­за пре­вы­ша­ет 4,5 млн. бел. руб­лей
32752050До­став­ка бес­плат­но, если сумма за­ка­за
пре­вы­ша­ет 5 млн. бел. руб­лей
12.  
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 14, зна­ме­на­тель: x в квад­ра­те минус 8x плюс 22 конец дроби минус x в квад­ра­те плюс 8x=17.

13.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  дробь: чис­ли­тель: c в квад­ра­те , зна­ме­на­тель: c плюс 3 конец дроби умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: c в квад­ра­те конец дроби плюс дробь: чис­ли­тель: 3 левая круг­лая скоб­ка 3 плюс 2c пра­вая круг­лая скоб­ка , зна­ме­на­тель: c в сте­пе­ни 4 конец дроби конец ар­гу­мен­та , если c мень­ше минус 15, равен ... .

14.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 50. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

15.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 3 ко­рень из 3 .

16.  
i

На кру­го­вой диа­грам­ме пред­став­ле­на ин­фор­ма­ция о про­да­же 200 кг ово­щей в те­че­ние дня. Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

А)  Масса (в ки­ло­грам­мах) про­дан­ной ка­пу­сты равна ...

Б)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­но­го кар­то­фе­ля мень­ше массы про­дан­ных по­ми­до­ров, равно ...

В)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ной свек­лы боль­ше массы про­дан­но­го лука, равно ...

Окон­ча­ние пред­ло­же­ния

1)   25

2)  40

3)  4

4)  125

5)  38

6)  19

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

17.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

 

1)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

2)  если  арк­ко­си­нус a= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

4)  если  синус альфа = синус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  альфа = минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби ;

6)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

18.  
i

На ко­ор­ди­нат­ной плос­ко­сти даны точки A(1; −3) и D(−5; −3). Точка С сим­мет­рич­на точке А от­но­си­тель­но оси абс­цисс, а точка В сим­мет­рич­на точке D от­но­си­тель­но на­ча­ла ко­ор­ди­нат. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­нияОкон­ча­ние пред­ло­же­ния

A)  Длина боль­шей диа­го­на­ли че­ты­рех­уголь­ни­ка ABCD равна ...

Б)  Длина наи­боль­шей сто­ро­ны че­ты­рех­уголь­ни­ка ABCD равна ...

B)  Пло­щадь че­ты­рех­уголь­ни­ка ABCD равна ...

1)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

2)  36

3)  30

4)   ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

5)  24

6)  6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

19.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: 15 минус x конец дроби боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка tg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .

20.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна 115, впи­са­на окруж­ность ра­ди­у­са 5. Най­ди­те пе­ри­метр тра­пе­ции.

21.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из 2 минус ко­рень из 6 минус 6 минус тан­генс 172 гра­ду­сов30'.

22.  
i

Чис­ло­вая по­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-го члена a_n=3n в квад­ра­те минус 34n. Най­ди­те наи­мень­ший член am этой по­сле­до­ва­тель­но­сти и его номер m. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния m · am.

23.  
i

Пусть A= ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 11 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та минус ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та конец ар­гу­мен­та . Най­ди­те зна­че­ние вы­ра­же­ния A12.

24.  
i

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 11,5.

25.  
i

Верх­нюю сто­ро­ну листа фа­не­ры пря­мо­уголь­ной формы раз­де­ли­ли для по­крас­ки пря­мой ли­ни­ей на две части так, как по­ка­за­но на ри­сун­ке. Тре­уголь­ную часть (I) по­кра­си­ли крас­кой бе­ло­го цвета, а че­ты­рех­уголь­ную (II)  — крас­кой се­ро­го цвета. Сколь­ко серой крас­ки (в грам­мах) было ис­поль­зо­ва­но, если крас­ки бе­ло­го цвета по­на­до­би­лось 270 г и рас­ход крас­ки (г/см2) обоих цве­тов оди­на­ков?

26.  
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус 15 x в квад­ра­те .

27.  
i

Най­ди­те сумму всех целых чисел из об­ла­сти опре­де­ле­ния функ­ции y= дробь: чис­ли­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 56 плюс 9x минус 2x в квад­ра­те конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус 3 конец дроби .

28.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 100 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 20 конец дроби .

29.  
i

Най­ди­те все пары (m, n) целых чисел, ко­то­рые свя­за­ны со­от­но­ше­ни­ем m2 + 2m  =  n2 + 6n + 13. Пусть k  — ко­ли­че­ство таких пар, m0  — наи­мень­шее из зна­че­ний m, тогда зна­че­ние вы­ра­же­ния k · m0 равно ... .

30.  
i

На сто­ро­не BC пря­мо­уголь­ни­ка ABCD от­ме­че­на точка O так, что OB : CB = 3 : 5. Из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO к плос­ко­сти пря­мо­уголь­ни­ка. Най­ди­те объем пи­ра­ми­ды ABCDS, если из­вест­но, что  ко­си­нус альфа = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 13 конец дроби , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSAD, CD = 5, AD =10.